Ultraviolet-Blocking Lenses Protect, Enhance Vision

In the 1980s, Jet Propulsion Laboratory (JPL) scientists James Stephens and Charles Miller were studying the harmful properties of light in space, as well as that of artificial radiation produced during laser and welding work. The intense light emitted during welding can harm unprotected eyes, leading to a condition called arc eye, in which ultraviolet light causes inflammation of the cornea and long-term retinal damage.

alt

Based on work done at NASA’s Jet Propulsion Laboratory, Eagle Eyes lenses filter out harmful radiation, reduce light scattering, and permit vision-enhancing wavelengths of light, protecting eyesight while also improving visibility.

To combat this danger, the JPL scientists developed a welding curtain capable of absorbing, filtering, and scattering the dangerous light. The curtain employed a light-filtering/vision-enhancing system based on dyes and tiny particles of zinc oxide—unique methods they discovered by studying birds of prey. The birds require near-perfect vision for hunting and survival, often needing to spot prey from great distances. The birds’ eyes produce tiny droplets of oil that filter out harmful radiation and permit only certain visible wavelengths of light through, protecting the eye while enhancing eyesight. The researchers replicated this oil droplet process in creating the protective welding curtain.

 

The welding curtain was commercialized, and then the scientists focused attention on another area where blocking ultraviolet light would be beneficial to the eyes: sunglasses. In 2010, the groundbreaking eyewear technology was inducted into the Space Foundation’s Space Technology Hall of Fame, which honors a select few products each year that have stemmed from space research and improved our lives here on Earth.

Partnership

SunTiger Inc.—now Eagle Eyes Optics, of Calabasas, California—was formed to market a full line of sunglasses based on the licensed NASA technology that promises 100-percent elimination of harmful wavelengths and enhanced visual clarity. Today, Eagle Eyes sunglasses are worn by millions of people around the world who enjoy the protective and vision-enhancing benefits.

Product Outcome

The Eagle Eyes lens (right) makes scenes more vivid because harmless wavelength colors such as red, orange, yellow, and green are enhanced, and damaging rays in the blue, violet, and ultraviolet (UV) wavelengths are blocked.

Maximum eye protection from the Sun’s harmful ultraviolet rays is critical to our ability to see clearly. This is because when light enters the eye, a series of events happen which can help, hinder, or even destroy our eyesight. First, light passes through the cornea and ultimately reaches the retina which contains two types of cells—rods (which handle vision in low light) and cones (which handle color vision and detail). The retina contains 100 million rods and 7 million cones. The outer segment of a rod or a cone contains the photosensitive chemical, rhodopsin, also called “visual purple.” Rhodopsin is the chemical that allows night vision, and is extremely sensitive to light. When exposed to a full spectrum of light, rhodopsin immediately bleaches out, and takes about 30 minutes to fully regenerate, with most of the adaption occurring in the dark within 5 to 10 minutes. Rhodopsin is less sensitive to the longer red wavelengths of light and therefore depleted more slowly (which is why many people use red light to help preserve night vision). When our eyes are exposed to the harmful, ultraviolet light rays of the Sun (UVA, UVB, and blue-light rays), damage to our eyes and their complex vision-enhancing processes can occur and not even be noticed until years later, long after exposure.

The most common form of eye damage related to ultraviolet exposure, cataracts, causes the lens of the eye to cloud, losing transparency and leading to reduced vision and, if left untreated, blindness. In the United States alone, it is estimated that cataracts diminish the eyesight of millions of people at an expense of billions of dollars. Other forms of eye damage directly attributable to ultraviolet exposure include pterygium, an abnormal mass of tissue arising from the conjunctiva of the inner corner of the eye; skin cancer around the eyes; and macular degeneration, which damages the center of the eye and prevents people from seeing fine details.

Alan Mittleman, president and CEO of Eagle Eyes explains, “When we’re born, our eyes are clear like drops of water. Throughout life, we start to destroy those sensitive tissues, causing the yellowing of the eyes and the gradual worsening of eyesight. When the eye becomes more and more murky, cataracts form. Simple protection of the human eye, from childhood and throughout adulthood could protect the clarity of the eye and extend good vision for many years—even our entire lifetime.

“It has only been recently,” he adds, “that people started to realize the importance of this.” Sunglass manufacturers are recognizing the importance of eye care, and consumers are becoming more aware of eye health. One issue still plaguing the sunglass market, though, is that consumers assume that darker lenses are more protective, which is not always the case.

 

It may feel more comfortable to wear the dark lenses, but in addition to reducing the field of vision, it relaxes the eye, which allows more blue light to get directly to the retina. Blue light, in particular, has long-term implications, because it passes through the cornea and damages the inner retinal area.

The Eagle Eyes lens allows wearers to see more clearly because it protects from ultraviolet light, but more importantly, blocks this blue light, allowing the good visible light while blocking the harmful wavelengths.

Among their many donations throughout the years and goal of spreading good vision and eye protection to remote areas of the world, Eagle Eyes Optics had the opportunity recently to provide assistance to a group in sore need of eye protection: children in Galena, Alaska. The incidence of cataracts is 300 times greater in Alaska because of the Sun’s reflection off of the snow. Eagle Eyes donated 150 pairs of its sunglasses to a high school in Galena, and they were delivered by members of the Space Foundation and presented by former NASA astronaut Livingston Holder.

[Source]

Advertisements

NASA Paves the way for a Greener Future

Green energy has been on everyone’s minds lately. With climate shift occurring at an alarming rate, America will begin shifting it’s investments towards cleaner, more renewable energy.  Over the years, NASA has  paved the way for alternative energy, creating tens-of-thousands of high-paying jobs along the way.

From being able to predict pot holes to designing a chip that will allow plants never to go without water, NASA has helped a great portion of this country achieve an easier life. Even outside the country, NASA has outfitted our military with stronger body armor, and have even created water-purifying bottles for those without a clean water supply.

Due to NASA’s need for renewable energy on space missions, they’ve been a pioneer in green energy creations. Some of their most important contributions to the world are:

Solar Energy – NASA has pioneered photovoltaic power systems for spacecraft applications. Solar energy technology has been developed for space programs to expand terrestrial applications where no other long term energy sources exist.

 

 

 

Forest Management – A satellite scanning system has been developed that monitors and maps forestation. It detects radiation reflected and emitted from trees.

 

 

 

Oil Spill Control – The concept was invented by Petrol Rem, Inc. of Pittsburgh, Penn. Also, Marshall Space Flight Center and NASA’s Jet Propulsion Laboratory helped to design the tiny beeswax balls (microcapsules). These microcapsules made of beeswax are designed so that water can’t get in, but oil can. The microorganisms inside release enzymes that digest the oil when the oil seeps through the shell. Once the balls are full of digested oil, they explode. The microcapsules release enzymes, carbon dioxide and water, all environmentally safe. The residue is even eatable fish food!

 

Fishing from Orbit – A series of satellites were launched in 1972 by NASA to observe the changing conditions of the earth’s surface. The ability to monitor changes to the earth for a long period of time provides invaluable information such as: preserving wildlife, monitoring air and water pollution, mapping the growth of cities, flood control and more.

 

 

 

Feeding Our World-And Prepping to Feed Other Worlds – Disney and NASA are working together in a unique partnership. They are striving to find ways to use human and industrial waste to provide the ingredients needed for growing edible plants. This technology will be needed for establishing human colonies on other worlds.

 

 

 

Other spin-offs include: Environmental Control Sensors, energy saving air conditioning, air purification, sewage treatment, pollution control and measuring devices, a whale identification method, and a earthquake prediction system. You can find more information about NASA Spinoffs at http://spinoff.nasa.gov

 

 

Space-Inspired Trailers Encourage Exploration on Earth

NASA Technology

An inch can make a world of difference. Which is why Garrett Finney moved the office coffee-maker into the full-size, cardboard mockup of the new trailer he was designing. The need for caffeine—and the threat of hot coffee accidentally dumped on a coworker—provided motivation and means for assessing the feasibility of a confined living space.

“We all had to go inside and bump into each other and figure out when 20 inches is much different from 21 inches in terms of the size of a table or passage,” Finney says.

altFinney has what he calls a “nonstandard expertise in people in small spaces.” He developed it while part of a NASA team designing living quarters for the International Space Station (ISS).

Though its crew of six—plus one Robonaut—has space larger than a five-bedroom house to live and work in, the ISS is also packed with electronics, life-support systems, racks of experiments, and more. Then consider that all of these components must be built to strict performance specifications for operation in a harsh space environment.

“It’s very difficult to write human beings into those performance specs,” says Finney.

Then add in further complications such as microgravity; long-duration stays far from family and friends; the lack of any nearby maintenance assistance; and crew-members with diverse backgrounds, cultures, and concepts of personal space. Accommodating all of these considerations while offering the greatest possible ease and comfort for the crew becomes a significant challenge.


Technology Transfer

In order to help address the problems arising from long-term living in space, NASA’s Johnson Space Center established the Habitability Design Center. In 1999, Finney, an award-winning architect in New York City, joined the center to collaborate with engineers on the design of a Habitation Module, planned as the main living quarters for the ISS crew.

“My interest in going there intellectually was to be working on the first permanent settlement, or home, in space. There’s science fiction, and then there’s that exciting place where dreams become reality, and I thought of the space station as that,” Finney says.

Whereas everything on the ISS must in a technical sense be operable and repairable by any crew-member regardless of that person’s size or strength, Finney explains, “That has nothing to do with irritation and emotion and function over time and comfort.” Finney formed a connection between the astronauts and the engineers, applying his architectural expertise not with an eye toward aesthetics, but instead “trying to remove irritation from astronauts’ lives.” This included finding space-friendly solutions to considerations that would be minor to those not orbiting hundreds of miles above Earth—such as a place, Finney says, “to accommodate a laptop and a book and a picture of your family, and yet not have it be wrong if you didn’t have a family photo. I wanted to let the crew use the space as they wanted. Physically, but also culturally, demographically.”

While Finney contributed a number of innovative approaches to living in space, including a table that substituted toeholds for chairs, funding for the Habitation Module was ultimately cancelled. (The partially built structure was later appropriated as a testbed for ground-based life support research.) Finney’s NASA experience, however, would prove a significant influence on his vision for “a piece of equipment people just happen to live in,” a new means for exploring Earth informed by the exploration of space.

Combining his NASA expertise with his love of the outdoors, Finney turned to an industry where space is also at a premium: recreational vehicles. In 2009, he launched Cricket, based in Houston, and set about designing the first Cricket trailer. Beginning with the coffee-machine-equipped cardboard model—testing ideas in full-scale cardboard form was a holdover from Finney’s time at NASA—the company soon arrived at a highly versatile, user-friendly trailer that it believes can revolutionize the camping experience and how people interact with the natural environment.


Benefits

alt“The RV industry in general makes houses on wheels,” Finney says. “We think many people want to—and should—leave their house at home.”

The Cricket trailer hits a midway point between camping and home living. Suitable for a full hookup campsite or going completely off-grid, the trailer can accommodate two adults and two children for sleeping and can be customized with a range of features including a shower, refrigerator, toilet, an array of storage options, and more. As in space where every surface—floor, walls, ceiling—can be functional, Finney designed the Cricket for maximum utility by virtually any user. The children’s berths, for example, are suspended from the ceiling and serve as storage when not in use.

Designing for the ISS, Finney explains, meant accommodating crew-members of different nationalities, each with different ideas of what personal space means, how close people should be when talking, how one acts when in a bad mood. “For Cricket, the question was how to design a trailer whose space evolved from the inside out and be able to claim with a straight face that it is perfect for a 75-year-old and a 25-year-old, a fly fisherman and a duck hunter and a family camper—even though it’s the same trailer.”

In a NASA-like way, Finney says, the company devised a shorter performance specification for the trailer. It designed the trailer to be light enough (1,300–1,400 pounds) to be towed by a 4-cylinder car and crafted an aerodynamic shape that is easy to see around and fits into most garages. And as is required of ISS equipment, the Cricket’s components are readily accessible and fixable. In that sense, “It’s more like a mountain bike than a house on wheels,” Finney says.

The Cricket trailer has attracted significant coverage from media outlets such as Dwell magazine and the Travel Channel. Finney hopes Cricket will prove the ideal tool for helping people connect with the natural world and revitalize interest in and sustainable use of the Nation’s park system.

“To be better stewards of our national parks, we need to go see them and fall in love with them again. We need to be inspired to be light on the land and part of the big ecosystem instead of pretending the parks are just postcards for looking at.”

When he talks about the Cricket trailer’s design, Finney says, he’s actually talking about what he learned at NASA.

“I’m tremendously glad I went to work at NASA and got a whole new set of eyes, a way to view the world and all the systems that interact in it.”

[Source]

Why Should We Spend Money on the NASA Space Program?

NASA budget grapghThe point to spending on the space program, for example, is shown by the timeline of spinoff technologies [1]. I’m preparing the fiscal numbers using the information posted on this blog to look into asking, “What is the financial effect of science and technology funding?”, so the Apollo program is a perfect example for looking into this question. As discussed in the timeline, Apollo led to “cool suits alleviate dangers from high-heat environments and medical conditions, Kidney dialysis machines remove toxic waste from used dialysis fluid, A machine aids physical therapy and athletic development, A stress-free ‘blow molding’ process manufactures athletic shoes, Communities benefit from water purification technology, Manufacturers preserve food through freeze-drying, and Sensors detect hazardous gasses.”

In today’s money, the $20.4 billion spent on the Apollo program is equivalent to $109 billion [2]. If we look at the markets that exist now because of these technologies (attempt to estimate the revenue gained if the technology did not now exist), then the dialysis market brings in $16 billion A YEAR (+, more than that due to secondary effects from increased quality of life) [3], the sports coaching market (which would benefit from a “machine aids athletic development”) brings in $6 billion a year (-, less because an athletic development machine would only lead to changes in part of the market) [4], the physical therapy market brings in $30 billion a year (-, less is attributable to the technology) [5], the athletic shoe market brings in $75 billion a year (-, less) [6], the water purification market brings in $20 billion a year (+, more from secondary effects) [7], and the hazardous gas detection market is $2 billion a year (+, more) [8]. Note that I have not been able to assemble fiscal numbers on all of the technologies listed above because of time constraints to do all the research. Also, the spinoff timeline did not mention that the Apollo program led to the development of the expendable launch vehicle market which is $53 billion over the next 10 years [9].

So finally, we can get our hands on a comparison. $20.4 billion spent in 1970 on the space program translates to somewhere around $154.3 billion dollars _A YEAR_ in technology-based markets. What this roughly indicates is that the cuts in NASA funding is the farming equivalent to eating your seed corn.

[References]

[1] http://spinoff.nasa.gov/Spinoff2008/pdf/timeline_08.pdf

[2] http://en.wikipedia.org/wiki/Apollo_program

[3] http://www.firstresearch.com/Industry-Research/Kidney-Dialysis-Centers.html

[4] http://www.ibisworld.com/industry/default.aspx?indid=1542

[5] http://www.ibisworld.com/industry/default.aspx?indid=1562

[6] http://www.prweb.com/releases/2013/6/prweb10808367.htm

[7] http://www.hkc22.com/waterpurification.html

[8] http://www.prnewswire.com/news-releases/global-gas-sensors-detectors-and-analyzers-markets-190181871.html

[9] http://www.militaryaerospace.com/articles/2011/10/expendable-launch.html

Archiving Innovations Preserve Essential Historical Records

NASA Technology

The Moon hosts perhaps the most fascinating museum that no one ever visits. From reflectometers to space boots, the lunar module’s descent stage, and the famous first footprints left behind by Neil Armstrong, the Apollo 11 mission alone left over 100 artifacts on the Moon’s surface.

Among the items at rest in the lunar regolith is an aluminum capsule containing a simple silicon disc about the size of a half-dollar coin. The disc displays messages of goodwill from 73 countries and four US presidents, all inscribed in letters a quarter of the width of a human hair, visible only under a microscope.

altIn order to compile the commemorative messages into a format that would not significantly add to Apollo 11’s payload, while also being able to endure the wild temperature extremes of the Moon’s surface, NASA partnered with Worcester, Massachusetts-based Sprague Electric Company. The company, which had already worked with the Agency to produce multiple components for the Apollo 11 mission, applied semiconductor manufacturing techniques to etch the messages on silicon, sizing them down until each individual message was smaller than the head of a pin.

Sprague patented the technique in 1971, but it would be decades later when a pair of innovators would build upon the NASA-derived technology to create a spinoff that is now preserving vital records on Earth in the same way that the world’s support of Apollo 11 is preserved on the Moon.

Technology Transfer

In 2006, P.R. Mukund, professor of electrical engineering at Rochester Institute of Technology, and PhD student Ajay Pasupuleti took on a task working with a material not typical to their field—palm leaves. The pair joined a project to preserve the content of the Sarvamoola Grantha, an ancient work of Hindu spiritual scholarship transcribed on stacks of palm leaves that, after some 700 years, were in severe danger of being lost to decay. Working with a team experienced in the preservation of ancient documents such as the Archimedes Palimpsest and the Dead Sea Scrolls, Mukund and Pasupuleti captured and preserved the text of the Sarvamoola Grantha using infrared imagery, winning international acclaim in the process.

“After we did that, we thought about creating a technology that would combine the best of ancient preservation technology with the most recent,” says Mukund. There are pros and cons on both ends of the spectrum, he explains. Stone tablets preserve information for thousands of years—but are not exactly easy to share or copy. Electronic images are ideal for sharing and are easy to copy, manipulate, and archive, but rapid changes in digital formats and storage media threaten to make certain formats of archived information obsolete. Physical storage media such as DVDs and even flash memory can also experience “bit rot,” in which data can be lost or corrupted.

“This is not exactly the way you want to save things that are meant to be preserved for 500 or 1,000 years,” Mukund says.

Mukund and Pasupuleti hit upon a solution within their field of expertise. Silicon, used extensively in the semiconductor industry, is highly durable and resistant to water, humidity, and temperatures up to 572 °F. Research into using silicon and semiconductor production techniques to create enduring copies of documents and records turned up the patent from NASA’s Apollo 11 mission. Since the patent had expired and entered the public domain, Mukund and Pasupuleti were able to use it as a building block for their own patented archiving technology. The pair formed NanoArk Corporation of Fairport, New York, to bring the innovation to market.

“People always ask, when we spend taxpayer dollars on the Space Program: Other than going to space, what does the technology do?” Mukund says. “Here is a classic story where it took more than 40 years before somebody actually thought of commercializing it.”


Benefits

altNanoArk’s Waferfiche technology employs a photolithographic process to inscribe minute copies of documents onto thin silicon discs, each of which can fit about 2,000 letter-sized images. The Waferfiche’s inherent material properties render it resistant to fire over a limited duration and, more importantly, practically impervious to water damage. NanoArk notes that the biggest threat to any kind of archived information is moisture.

“Last year, in New York state alone, 65 local governments lost records due to water damage,” says Pasupuleti, now NanoArk’s vice president of technology. “Our technology is water resistant. You can leave it in water for months, take it out, and just wipe it down with a cloth.”

NanoArk claims its Waferfiche technology will preserve essential records for 500 years. While the currently prevalent archiving technology, microfilm, offers the same longevity, it can only do so in temperature and humidity controlled environments. Waferfiche requires no such care, resulting in increasing cost savings over time and minimal environmental impact. If the customer needs to retrieve any archived information from a Waferfiche, the minimal technology required is a magnifying glass.

“There is nothing out there that can beat this technology in terms of long-term preservation of important records and documents,” says Mukund, NanoArk’s president and CEO.

Since introducing the technology commercially in 2008, NanoArk has grown from 2 employees to 10, experienced a five-fold increase in revenue between 2010 and 2011, and recently opened an office in Hyderabad, India. It counts multiple town, county, and state governments among its customers, as well as universities, and has plans to market the technology as a franchise. One of the keys to the innovation’s future success, says Mukund, is its NASA connection.

“When people find out that this technology is what NASA used as a time capsule on the Moon,” he says, “surely that is a good enough credential as far as the viability of the technology for long-term preservation.”

[Source]

NASA Installs LITO Technologies’ Innovative Perimeter Monitoring System

 LITO Technologies Perimeter Security System / LITO Technologies' Perimeter Security System, installed at NASA Glenn Research Center (PRNewsFoto/LITO Technologies, Inc.)A collaboration of LITO Technologies, Inc. and NASA’s Glenn Research Center,Cleveland, Ohio, has resulted in the launch of new technology which will revolutionize security monitoring systems.  Furthermore, this type of collaboration could prove to be a new model to help publicly funded technology make the transition to privately funded commercialization.

The product of NASA’s SBIR Grants, the LITO (Laser Imaging Through Obscurants) system, from LITO Technologies, Inc., allows monitoring and sensing in visually obscured weather conditions such as rain, snow, fog, hail and smoke, sand, and dust. It was designed initially to be an onboard sensor for aircraft landing, but the uses for perimeter screening in top security usage became immediately evident.

LITO allows for continual monitoring of a location or multiple locations regardless of how bad weather scenarios may get.

Last month, the LITO Omnivid-1 security system was installed at NASA Glenn for perimeter protection and will also provide a demonstration for other government agencies that may have similar perimeter security requirements.

Because the LITO system can also see through obscurants such as sand, dust, and even fire, the LITO technology will soon cover many sectors including aircraft imaging, border security, firefighting, search and rescue, and potentially even asteroid mapping.

The entire project is an example of the public and private sectors partnering with the input of advanced-thinking entrepreneurs and scientists like LITO’s Robert ForakerJared Sullivan, and Dr. Richard Billmers who are working in cooperation with NASA technology projects to create and commercialize advanced technical solutions effectively.

Dr. Richard Billmers, also of RL Associates of Yardley, Pennsylvania, had developed elements of the LITO systems for onboard aircraft sensors, under NASA SBIR Aviation Grants in conjunction with NASA Langley Research Center, Hampton Virginia. Successful demonstrations on the ground and in-flight have resulted in a commercialization strategy that begins with perimeter security applications.  The commercialization path will lead to smaller more compact LITO systems that will eventually be used in aircraft to visualize runway scenarios in inclement weather as a part of the Next Generation of Air Flight program.

Billmers was invited by NASA to present his LITO system at their 2012 Technology Days event in Cleveland Ohio. The event was to showcase technology and companies in an effort to stimulated new start ups, and economic growth for the area. The effort seems to have worked.

Robert Foraker, a Private Merchant Banker from Canton, Ohio, and 10 year recipient of NASA agreements, was impressed with the LITO system, when he saw it at the Technology Days event, and authored a collaboration agreement with RL Associates to bring the LITO system to ground based use at NASA Glenn. Foraker fielded the private funding required for the project from a progressive management company called The Woodhaven Group, out of Augusta, Georgia, managed by Jared Sullivan, with whom Foraker had previously worked through his ACT International Incubator.

The entire LITO/NASA collaboration process began and came together in just 51 weeks from the Technology Days event, in 2012, culminating in a Space Act Agreement between NASA’s Glenn Research Center, and LITO in 2013.

This collaboration was made in an effort to get advanced technology commercialized for public use, and help streamline the way the public sector and private sector work together to move technology forward as a whole. Hopefully, this will be just the first of many collaborations between NASA and the private sector to help technological entrepreneurs, by showcasing the technology and moving it to market quickly.

More information on LITO’s laser systems can be found at www.LITOTechnologies.com or email directly to pr@litotechnologies.com.

[Source]

Behavior Prediction Tools Strengthen Nanoelectronics

NASA Technology

Several years ago, NASA started making plans to send robots to explore the deep, dark craters on the Moon. As part of these plans, NASA needed modeling tools to help engineer unique electronics to withstand extremely cold temperatures.

According to Jonathan Pellish, a flight systems test engineer at Goddard Space Flight Center, “An instrument sitting in a shadowed crater on one of the Moon’s poles would hover around 43 K”—that is, 43 kelvin, equivalent to -382 °F. Such frigid temperatures are one of the main factors that make the extreme space environments encountered on the Moon and elsewhere so extreme.

altRadiation is another main concern. “Radiation is always present in the space environment,” says Pellish. “Small to moderate solar energetic particle events happen regularly and extreme events happen less than a handful of times throughout the 7 active years of the 11-year solar cycle.” Radiation can corrupt data, propagate to other systems, require component power cycling, and cause a host of other harmful effects.

In order to explore places like the Moon, Jupiter, Saturn, Venus, and Mars, NASA must use electronic communication devices like transmitters and receivers and data collection devices like infrared cameras that can resist the effects of extreme temperature and radiation; otherwise, the electronics would not be reliable for the duration of the mission.

Technology Transfer

Since 1987, NASA has partnered with Huntsville, Alabama-based CFD Research Corporation (CFDRC), a company that specializes in engineering simulations and innovative designs and prototypes for aerospace and other industries. A few years ago, CFDRC received funding from Marshall Space Flight Center’s Small Business Innovation Research (SBIR) program to refine an existing software tool to predict the behavior of electronics in the cold, radiation-filled environment of space.

During the first phase of its work, in collaboration with Georgia Tech, CFDRC enhanced and demonstrated a technology called NanoTCAD for predicting the response of silicon-germanium (SiGe) semiconductor technology to radiation. During its second phase, the company demonstrated and validated NanoTCAD for temperature ranges from -382–266 °F.

Marek Turowski, the director of the nanoelectronic and plasma technology group at CFDRC explains how, as electronic parts become smaller, the effects of radiation and temperature become more severe. “When radiation particles bombard a microchip, it is like hail hitting a car,” he says.

Even though hail may not damage a large truck, the same hail could cause significant damage to a truck the size of a toy. Likewise, as electronic devices decrease in size, radiation particles can damage them more easily.

Being able to predict the behavior of nanoelectronics in the extreme space environment reduces the risk of failure during a critical NASA mission. Using NanoTCAD, designers can better evaluate performance and response of electronics early in the design stage, thereby reducing the costs and testing time involved. As Turowski explains it, “The purpose of NanoTCAD tools and models is to predict the behavior of electronics in space before they actually go to space. The prediction happens on the computer screen and accurately takes temperature and radiation into account.”

Pellish says NanoTCAD has already been used to evaluate key technologies for the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2), scheduled for launch in 2016. ICESat-2 will look at polar ice, sea-level change, vegetation canopy height, and climate. “The NanoTCAD research on SiGe semiconductor technology processes provided a portion of the necessary insight into this technology so that it can be used in space,” he says.


Benefits

altNanoTCAD software is now available from CFDRC as a nanotechnology computer aided design (CAD) tool to predict the effects of extreme thermal and radiation environments on electronic systems. It is also used by CFDRC in its modeling and simulation services provided to the aerospace industry. The “nano” part of the product’s name means the software can address nano-size devices while “TCAD” stands for “technology computer aided design.”

“It solves basic physics equations,” says Turowski. “It looks at how electrons flow, how fields inside the devices behave, and how the varying temperature affects their behavior.”

Today, CFDRC’s NanoTCAD customers include electronic chip designers at Georgia Tech and Vanderbilt University. The electronics, chips, circuits, and devices that the universities are modeling with NanoTCAD are often for NASA missions. The European Space Agency and the Japanese Aerospace Exploration Agency are also potential customers of CFDRC’s NASA-improved technology.

The tool is also being employed for Department of Defense applications for space communication and surveillance systems for satellites. Entities like the Air Force and Navy design electronics that can suffer the same problems as NASA spacecraft. CFDRC also uses NanoTCAD to provide modeling, simulations, and radiation-hardening design services to national nuclear laboratories and commercial satellite designers.

According to CFDRC, the technology has led to approximately $2 million in revenue for the company, created new jobs, and led to partnerships with other defense and industrial customers.

“NASA has given us the opportunity to develop valuable technology,” says Turowski. “Now the technology is being adapted and enhanced for every new generation of electronics.”

Whether it is for the Moon, on-orbit, or other applications, CFDRC’s work with NASA is helping to make future space missions possible.

[Source]