Archiving Innovations Preserve Essential Historical Records

NASA Technology

The Moon hosts perhaps the most fascinating museum that no one ever visits. From reflectometers to space boots, the lunar module’s descent stage, and the famous first footprints left behind by Neil Armstrong, the Apollo 11 mission alone left over 100 artifacts on the Moon’s surface.

Among the items at rest in the lunar regolith is an aluminum capsule containing a simple silicon disc about the size of a half-dollar coin. The disc displays messages of goodwill from 73 countries and four US presidents, all inscribed in letters a quarter of the width of a human hair, visible only under a microscope.

altIn order to compile the commemorative messages into a format that would not significantly add to Apollo 11’s payload, while also being able to endure the wild temperature extremes of the Moon’s surface, NASA partnered with Worcester, Massachusetts-based Sprague Electric Company. The company, which had already worked with the Agency to produce multiple components for the Apollo 11 mission, applied semiconductor manufacturing techniques to etch the messages on silicon, sizing them down until each individual message was smaller than the head of a pin.

Sprague patented the technique in 1971, but it would be decades later when a pair of innovators would build upon the NASA-derived technology to create a spinoff that is now preserving vital records on Earth in the same way that the world’s support of Apollo 11 is preserved on the Moon.

Technology Transfer

In 2006, P.R. Mukund, professor of electrical engineering at Rochester Institute of Technology, and PhD student Ajay Pasupuleti took on a task working with a material not typical to their field—palm leaves. The pair joined a project to preserve the content of the Sarvamoola Grantha, an ancient work of Hindu spiritual scholarship transcribed on stacks of palm leaves that, after some 700 years, were in severe danger of being lost to decay. Working with a team experienced in the preservation of ancient documents such as the Archimedes Palimpsest and the Dead Sea Scrolls, Mukund and Pasupuleti captured and preserved the text of the Sarvamoola Grantha using infrared imagery, winning international acclaim in the process.

“After we did that, we thought about creating a technology that would combine the best of ancient preservation technology with the most recent,” says Mukund. There are pros and cons on both ends of the spectrum, he explains. Stone tablets preserve information for thousands of years—but are not exactly easy to share or copy. Electronic images are ideal for sharing and are easy to copy, manipulate, and archive, but rapid changes in digital formats and storage media threaten to make certain formats of archived information obsolete. Physical storage media such as DVDs and even flash memory can also experience “bit rot,” in which data can be lost or corrupted.

“This is not exactly the way you want to save things that are meant to be preserved for 500 or 1,000 years,” Mukund says.

Mukund and Pasupuleti hit upon a solution within their field of expertise. Silicon, used extensively in the semiconductor industry, is highly durable and resistant to water, humidity, and temperatures up to 572 °F. Research into using silicon and semiconductor production techniques to create enduring copies of documents and records turned up the patent from NASA’s Apollo 11 mission. Since the patent had expired and entered the public domain, Mukund and Pasupuleti were able to use it as a building block for their own patented archiving technology. The pair formed NanoArk Corporation of Fairport, New York, to bring the innovation to market.

“People always ask, when we spend taxpayer dollars on the Space Program: Other than going to space, what does the technology do?” Mukund says. “Here is a classic story where it took more than 40 years before somebody actually thought of commercializing it.”


Benefits

altNanoArk’s Waferfiche technology employs a photolithographic process to inscribe minute copies of documents onto thin silicon discs, each of which can fit about 2,000 letter-sized images. The Waferfiche’s inherent material properties render it resistant to fire over a limited duration and, more importantly, practically impervious to water damage. NanoArk notes that the biggest threat to any kind of archived information is moisture.

“Last year, in New York state alone, 65 local governments lost records due to water damage,” says Pasupuleti, now NanoArk’s vice president of technology. “Our technology is water resistant. You can leave it in water for months, take it out, and just wipe it down with a cloth.”

NanoArk claims its Waferfiche technology will preserve essential records for 500 years. While the currently prevalent archiving technology, microfilm, offers the same longevity, it can only do so in temperature and humidity controlled environments. Waferfiche requires no such care, resulting in increasing cost savings over time and minimal environmental impact. If the customer needs to retrieve any archived information from a Waferfiche, the minimal technology required is a magnifying glass.

“There is nothing out there that can beat this technology in terms of long-term preservation of important records and documents,” says Mukund, NanoArk’s president and CEO.

Since introducing the technology commercially in 2008, NanoArk has grown from 2 employees to 10, experienced a five-fold increase in revenue between 2010 and 2011, and recently opened an office in Hyderabad, India. It counts multiple town, county, and state governments among its customers, as well as universities, and has plans to market the technology as a franchise. One of the keys to the innovation’s future success, says Mukund, is its NASA connection.

“When people find out that this technology is what NASA used as a time capsule on the Moon,” he says, “surely that is a good enough credential as far as the viability of the technology for long-term preservation.”

[Source]

Advertisements

NASA Installs LITO Technologies’ Innovative Perimeter Monitoring System

 LITO Technologies Perimeter Security System / LITO Technologies' Perimeter Security System, installed at NASA Glenn Research Center (PRNewsFoto/LITO Technologies, Inc.)A collaboration of LITO Technologies, Inc. and NASA’s Glenn Research Center,Cleveland, Ohio, has resulted in the launch of new technology which will revolutionize security monitoring systems.  Furthermore, this type of collaboration could prove to be a new model to help publicly funded technology make the transition to privately funded commercialization.

The product of NASA’s SBIR Grants, the LITO (Laser Imaging Through Obscurants) system, from LITO Technologies, Inc., allows monitoring and sensing in visually obscured weather conditions such as rain, snow, fog, hail and smoke, sand, and dust. It was designed initially to be an onboard sensor for aircraft landing, but the uses for perimeter screening in top security usage became immediately evident.

LITO allows for continual monitoring of a location or multiple locations regardless of how bad weather scenarios may get.

Last month, the LITO Omnivid-1 security system was installed at NASA Glenn for perimeter protection and will also provide a demonstration for other government agencies that may have similar perimeter security requirements.

Because the LITO system can also see through obscurants such as sand, dust, and even fire, the LITO technology will soon cover many sectors including aircraft imaging, border security, firefighting, search and rescue, and potentially even asteroid mapping.

The entire project is an example of the public and private sectors partnering with the input of advanced-thinking entrepreneurs and scientists like LITO’s Robert ForakerJared Sullivan, and Dr. Richard Billmers who are working in cooperation with NASA technology projects to create and commercialize advanced technical solutions effectively.

Dr. Richard Billmers, also of RL Associates of Yardley, Pennsylvania, had developed elements of the LITO systems for onboard aircraft sensors, under NASA SBIR Aviation Grants in conjunction with NASA Langley Research Center, Hampton Virginia. Successful demonstrations on the ground and in-flight have resulted in a commercialization strategy that begins with perimeter security applications.  The commercialization path will lead to smaller more compact LITO systems that will eventually be used in aircraft to visualize runway scenarios in inclement weather as a part of the Next Generation of Air Flight program.

Billmers was invited by NASA to present his LITO system at their 2012 Technology Days event in Cleveland Ohio. The event was to showcase technology and companies in an effort to stimulated new start ups, and economic growth for the area. The effort seems to have worked.

Robert Foraker, a Private Merchant Banker from Canton, Ohio, and 10 year recipient of NASA agreements, was impressed with the LITO system, when he saw it at the Technology Days event, and authored a collaboration agreement with RL Associates to bring the LITO system to ground based use at NASA Glenn. Foraker fielded the private funding required for the project from a progressive management company called The Woodhaven Group, out of Augusta, Georgia, managed by Jared Sullivan, with whom Foraker had previously worked through his ACT International Incubator.

The entire LITO/NASA collaboration process began and came together in just 51 weeks from the Technology Days event, in 2012, culminating in a Space Act Agreement between NASA’s Glenn Research Center, and LITO in 2013.

This collaboration was made in an effort to get advanced technology commercialized for public use, and help streamline the way the public sector and private sector work together to move technology forward as a whole. Hopefully, this will be just the first of many collaborations between NASA and the private sector to help technological entrepreneurs, by showcasing the technology and moving it to market quickly.

More information on LITO’s laser systems can be found at www.LITOTechnologies.com or email directly to pr@litotechnologies.com.

[Source]

Behavior Prediction Tools Strengthen Nanoelectronics

NASA Technology

Several years ago, NASA started making plans to send robots to explore the deep, dark craters on the Moon. As part of these plans, NASA needed modeling tools to help engineer unique electronics to withstand extremely cold temperatures.

According to Jonathan Pellish, a flight systems test engineer at Goddard Space Flight Center, “An instrument sitting in a shadowed crater on one of the Moon’s poles would hover around 43 K”—that is, 43 kelvin, equivalent to -382 °F. Such frigid temperatures are one of the main factors that make the extreme space environments encountered on the Moon and elsewhere so extreme.

altRadiation is another main concern. “Radiation is always present in the space environment,” says Pellish. “Small to moderate solar energetic particle events happen regularly and extreme events happen less than a handful of times throughout the 7 active years of the 11-year solar cycle.” Radiation can corrupt data, propagate to other systems, require component power cycling, and cause a host of other harmful effects.

In order to explore places like the Moon, Jupiter, Saturn, Venus, and Mars, NASA must use electronic communication devices like transmitters and receivers and data collection devices like infrared cameras that can resist the effects of extreme temperature and radiation; otherwise, the electronics would not be reliable for the duration of the mission.

Technology Transfer

Since 1987, NASA has partnered with Huntsville, Alabama-based CFD Research Corporation (CFDRC), a company that specializes in engineering simulations and innovative designs and prototypes for aerospace and other industries. A few years ago, CFDRC received funding from Marshall Space Flight Center’s Small Business Innovation Research (SBIR) program to refine an existing software tool to predict the behavior of electronics in the cold, radiation-filled environment of space.

During the first phase of its work, in collaboration with Georgia Tech, CFDRC enhanced and demonstrated a technology called NanoTCAD for predicting the response of silicon-germanium (SiGe) semiconductor technology to radiation. During its second phase, the company demonstrated and validated NanoTCAD for temperature ranges from -382–266 °F.

Marek Turowski, the director of the nanoelectronic and plasma technology group at CFDRC explains how, as electronic parts become smaller, the effects of radiation and temperature become more severe. “When radiation particles bombard a microchip, it is like hail hitting a car,” he says.

Even though hail may not damage a large truck, the same hail could cause significant damage to a truck the size of a toy. Likewise, as electronic devices decrease in size, radiation particles can damage them more easily.

Being able to predict the behavior of nanoelectronics in the extreme space environment reduces the risk of failure during a critical NASA mission. Using NanoTCAD, designers can better evaluate performance and response of electronics early in the design stage, thereby reducing the costs and testing time involved. As Turowski explains it, “The purpose of NanoTCAD tools and models is to predict the behavior of electronics in space before they actually go to space. The prediction happens on the computer screen and accurately takes temperature and radiation into account.”

Pellish says NanoTCAD has already been used to evaluate key technologies for the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2), scheduled for launch in 2016. ICESat-2 will look at polar ice, sea-level change, vegetation canopy height, and climate. “The NanoTCAD research on SiGe semiconductor technology processes provided a portion of the necessary insight into this technology so that it can be used in space,” he says.


Benefits

altNanoTCAD software is now available from CFDRC as a nanotechnology computer aided design (CAD) tool to predict the effects of extreme thermal and radiation environments on electronic systems. It is also used by CFDRC in its modeling and simulation services provided to the aerospace industry. The “nano” part of the product’s name means the software can address nano-size devices while “TCAD” stands for “technology computer aided design.”

“It solves basic physics equations,” says Turowski. “It looks at how electrons flow, how fields inside the devices behave, and how the varying temperature affects their behavior.”

Today, CFDRC’s NanoTCAD customers include electronic chip designers at Georgia Tech and Vanderbilt University. The electronics, chips, circuits, and devices that the universities are modeling with NanoTCAD are often for NASA missions. The European Space Agency and the Japanese Aerospace Exploration Agency are also potential customers of CFDRC’s NASA-improved technology.

The tool is also being employed for Department of Defense applications for space communication and surveillance systems for satellites. Entities like the Air Force and Navy design electronics that can suffer the same problems as NASA spacecraft. CFDRC also uses NanoTCAD to provide modeling, simulations, and radiation-hardening design services to national nuclear laboratories and commercial satellite designers.

According to CFDRC, the technology has led to approximately $2 million in revenue for the company, created new jobs, and led to partnerships with other defense and industrial customers.

“NASA has given us the opportunity to develop valuable technology,” says Turowski. “Now the technology is being adapted and enhanced for every new generation of electronics.”

Whether it is for the Moon, on-orbit, or other applications, CFDRC’s work with NASA is helping to make future space missions possible.

[Source]

Simulation Packages Expand Aircraft Design Options

NASA Technology

When engineers explore designs for safer, more fuel efficient, or faster aircraft, they encounter a common problem: they never know exactly what will happen until the vehicle gets off the ground.

“You will never get the complete answer until you build the airplane and fly it,” says Colin Johnson of Desktop Aeronautics. “There are multiple levels of simulation you can do to approximate the vehicle’s performance, however.”

altWhen designing a new air vehicle, computational fluid dynamics, or CFD, comes in very handy for engineers. CFD can predict the flow of fluids and gasses around an object—such as over an aircraft’s wing—by running complex calculations of the fluid physics. This information is helpful in assessing the aircraft’s aerodynamic performance and handling characteristics.

In 2001, after several years of development, NASA released a new approach to CFD called Cart3D. The tool provides designers with an automated, highly accurate computer simulation suite to streamline the conceptual analysis of aerospace vehicles. Specifically, it allows users to perform automated CFD analysis on complex vehicle designs. In 2002, the innovation won NASA’s Software of the Year award.

Michael Aftosmis, one of the developers of Cart3D and a fluid mechanics engineer at Ames Research Center, says the main purpose of the program was to remove the mesh generation bottleneck from CFD. A major benefit of Cart3D is that the mesh, or the grid for analyzing designs, is produced automatically. Traditionally, the mesh has been generated by hand, and requires months or years to produce for complex vehicle configurations. Cart3D’s automated volume mesh generation enables even the most complex geometries to be modeled hundreds of times faster, usually within seconds. “It allows a novice user to get the same quality results as an expert,” says Aftosmis.

Now, a decade later, NASA continues to enhance Cart3D to meet users’ needs for speed, power, and flexibility. Cart3D provides the best of both worlds—the payoff of using a complex, high-fidelity simulation with the ease of use and speed of a much simpler, lower-fidelity simulation method. Aftosmis explains how instead of simulating just one case, Cart3D’s ease of use and automation allows a user to efficiently simulate many cases to understand how a vehicle behaves for a range of conditions. “Cart3D is the first tool that was able to do that successfully,” he says.

At NASA, Aftosmis estimates that 300–400 engineers use the package. “We use it for space vehicle design, supersonic aircraft design, and subsonic aircraft design.”

Technology Transfer

To enable more use of Cart3D for private and commercial aviation entities, the Small Business Innovation Research (SBIR) program at Langley Research Center provided funds to Desktop Aeronautics, based in Palo Alto, California, to build a plug-in to Cart3D that increases the code’s accuracy under particular flow conditions. Aftosmis says Desktop Aeronautics delivered valuable results and made Cart3D more applicable for general use. “Now they are bringing the product to market. This is something we never would have had the time to do at NASA. That’s the way the SBIR process is supposed to work.”

In 2010, Desktop Aeronautics acquired a license from Ames to sell Cart3D. The company further enhanced the software by making it cross-platform, incorporated a graphical user interface, and added specialized features to enable extra computation for the analysis of airplanes with engines and exhaust.

“I think it’s going to be game-changing for CFD,” says Aftosmis. “Cart3D is the only commercial simulation tool that can guarantee the accuracy of every solution the user does.”


Benefits

altToday, Desktop Aeronautics employs Cart3D in its consulting services and licenses the spinoff product to clients for in-house use. The company provides commercial licenses and academic licenses for research and development projects.

The software package allows users to perform automated CFD analysis on complex designs and, according to the company, enables geometry acquisition and mesh generation to be performed within a few minutes on most desktop computers.

Simulations generated by Cart3D are assisting organizations in the design of subsonic aircraft, space planes, spacecraft, and high speed commercial jets. Customers are able to simulate the efficiency of designs through performance metrics such as lift-to-drag ratio.

“It will assemble a spectrum of solutions for many different cases, and from that spectrum, the cases that perform best give insight into how to improve one’s design,” says Johnson. “Cart3D’s preeminent benefit is that it’s automated and can handle complex geometry. It’s blazing fast. You push a button, and it takes care of the volume meshing and flow measurement.”

Without building an aircraft, engineers can never be completely certain which design concept will perform best in flight. However, they now have a tool to make the most informed prediction possible.

[Source]

Web Solutions Inspire Cloud Computing Software

NASA Technology

In 2008, a NASA effort to standardize its websites inspired a breakthrough in cloud computing technology. The innovation has spurred the growth of an entire industry in open source cloud services that has already attracted millions in investment and is currently generating hundreds of millions in revenue.

William Eshagh was part of the project in the early days, when it was known as NASA.net. “The feeling was that there was a proliferation of NASA websites and approaches to building them. Everything looked different, and it was all managed differently—it was a fragmented landscape.”

altNASA.net aimed to resolve this problem by providing a standard set of tools and methods for web developers. The developers, in turn, would provide design, code, and functionality for their project while adopting and incorporating NASA’s standardized approach. Says Eshagh, “The basic idea was that the web developer would write their code and upload it to the website, and the website would take care of everything else.”

altEven though the project was relatively narrow in its focus, the developers soon realized that they would need bigger, more foundational tools to accomplish the job. “We were trying to create a ‘platform layer,’ which is the concept of giving your code over to the service. But in order to build that, we actually needed to go a step deeper,” says Eshagh.

That next step was to create an “infrastructure service.” Whereas NASA.net was a platform for dealing with one type of application, an infrastructure service is a more general tool with a simpler purpose: to provide access to computing power. While such computing power could be used to run a service like NASA.net, it could also be used for other applications.

Put another way, what the team came to realize was that they needed to create a cloud computing service. Cloud computing is the delivery of software, processing power, and storage over the Internet. Whether these resources are as ordinary as a library of music files or as complex as a network of supercomputers, cloud computing enables an end user to control them remotely and simply. “The idea is to be able to log on to the service and say ‘I want 10 computers,’ and within a minute, I can start using those computers for any purpose whatsoever,” says Eshagh.

As the scope of the project expanded, NASA.net came to be known as Nebula. Much more than setting standards for Agency web developers, Nebula was intended to provide NASA developers, researchers, and scientists with a wide range of services for accessing and managing the large quantities of data the Agency accumulates every day. This was an enormous undertaking that only a high-powered cloud computing platform could provide.

Raymond O’Brien, former program manager of Nebula, says the project was in some ways ahead of its time. “Back in 2008 and 2009, people were still trying to figure out what ‘cloud’ meant. While lots of people were calling themselves ‘cloud enabled’ or ‘cloud ready,’ there were few real commercial offerings. With so little clarity on the issue, there was an opportunity for us to help fill that vacuum.”


altAs the team built Nebula, one of the most pressing questions they faced was that of open source development, or the practice of building software in full view of the public over the Internet.

On the one hand, proprietary code might have helped the project overcome early hurdles, as commercial software can offer off-the-shelf solutions that speed up development by solving common problems. Proprietary software is sometimes so useful and convenient that the Nebula team wasn’t even sure that they could create the product without relying on closed source solutions at some point.

On the other hand, open source development would facilitate a collaborative environment without borders—literally anyone with the know-how and interest could access the code and improve on it. Because Nebula had evolved into a project that was addressing very general, widespread needs—not just NASA-wide, but potentially worldwide—the possibility of avoiding restrictive licensing agreements by going open source was very attractive.

O’Brien says that broad appeal was an important part of Nebula’s identity. “From the beginning, we wanted this project to involve a very large community—private enterprises, academic institutions, research labs—that would take Nebula and bring it to the next level. It was a dream, a vision. It was that way from the start.”

Despite uncertainties, the development team decided to make Nebula purely open source. Eshagh says the real test for that philosophy came when those constraints were stretched to their limits. “Eventually, we determined that existing open source tools did not fully address Nebula’s requirements,” he says. “But instead of turning to proprietary tools, we decided to write our own.”

The problem was with a component of the software called the cloud controller, or the tool that can turn a single server or pool of servers into many virtual servers, which can then be provisioned remotely using software. In effect, the controller gives an end user access in principle to as much or as little computing power and storage as is needed. Existing tools were either written in the wrong programming language or under the wrong software license.

Within a matter of days, the Nebula team had built a new cloud controller from scratch, in Python (their preferred programming language for the controller), and under an open source license. When the team announced this breakthrough on its blog, they immediately began attracting attention from some of the biggest players in the industry. “We believed we were addressing a general problem that would have broad interest,” says Eshagh. “As it turns out, that prediction couldn’t have been more accurate.”

Technology Transfer

Rackspace Inc., of San Antonio, Texas, was one of the companies most interested in the technology. Rackspace runs the second largest public cloud in the world and was at the time offering computing and storage services using software they had created in-house. Jim Curry, general manager of Rackspace Cloud Builders, says they faced hurdles similar to those NASA faced in building a private cloud. “We tried to use available technology,” he says, “but it couldn’t scale up to meet our needs.”

The engineers at Rackspace wrote their own code for a number of years, but Curry says they didn’t see it as a sustainable activity. “We’re a hosting company—people come to us when they want to run standard server environments with a high level of hosting support that we can offer them. Writing proprietary code for unique technologies is not something we wanted to be doing long-term.”

The developers at Rackspace were fans of open source development and had been looking into open source solutions right at the time the Nebula team announced its new cloud controller. “Just weeks before we were going to announce our own open source project, we saw that what NASA had released looked very similar to what we were trying to do.” Curry reached out to the Nebula team, and within a week the two development teams met and agreed that it made sense to collaborate on the project going forward.

Each of the teams brought something to the table, says Curry. “The nice thing about it was that we were more advanced than NASA in some areas and vice versa, and we each complemented the other very well. For example, NASA was further along with their cloud controller, whereas we were further along on the storage side of things.”

The next step was for each organization to make its code open source so the two teams could launch the project as an independent, open entity. Jim Curry says the team at Rackspace was stunned by the speed at which NASA moved through the process. “Within a period of 30–45 days, NASA completed the process of getting the agreements to have this stuff done. From my perspective, they moved as fast as any company I’ve ever worked with, and it was really impressive to watch.”

The OpenStack project, the successor to Nebula with development from Rackspace, was announced in July 2010. As open source software, OpenStack has attracted a very broad community: nearly 2,500 independent developers and 150 companies are a part of it—including such giants as AT&T, HP, Cisco, Dell, and Intel. Semi-annual developers’ conferences, where members of the development community meet to exchange ideas and explore new directions for the software, now attract over 1,000 participants from about two dozen different countries.

Benefits

Because OpenStack is free, companies who use it to deploy servers do not need to pay licensing fees—fees that can easily total thousands of dollars per server per year. With the number of companies that have already adopted OpenStack, the software has potentially saved millions of dollars in server costs.

“Before OpenStack,” says Curry, “your only option was to pay someone money to solve the problem that OpenStack is addressing today. For people who want it as a solution, who like the idea of consuming open source, they now have an alternative to proprietary options.”

Not only is OpenStack saving money; it is also generating jobs and revenue at a remarkable pace. Curry says that dozens of Rackspace’s 80 cloud engineering jobs are directly attributable to OpenStack, and that the technology has created hundreds of jobs throughout the industry. “Right now, trying to find someone with OpenStack experience, especially in San Francisco, is nearly impossible, because demand is so high.”

The technology is currently generating hundreds of millions in revenue: Rackspace’s public cloud alone— which largely relies on OpenStack—currently takes in $150 million a year. Curry, Eshagh, and O’Brien all predict that the software will be its own billion-dollar industry within a few years.

Because OpenStack is open source, and is modified and improved by the people who use it, it is more likely to remain a cutting-edge solution for cloud computing needs. Says Eshagh, “We are starting to see the heavyweights in the industry adding services on top of OpenStack—which they can do because they have a common framework to build from. That means we’ll see even more services and products being created.”

In 2012, Rackspace took steps to secure OpenStack’s future as a free and open source project: the company began the process of spinning off the platform into its own nonprofit organization. By separating itself from any one commercial interest, Curry says, the project will be better positioned to continue doing what its founders hoped it would.

O’Brien maintains that OpenStack’s potential is far from being realized. “It’s hard to characterize in advance. If you had asked an expert about Linux years ago, who could have predicted that it would be in nearly everything, as it is today? It’s in phones and mobile devices. It’s in 75 percent of deployed servers. It’s even used to support space missions. OpenStack has a chance to hit something similar to that in cloud computing.”

Curry agrees: “In the future, you can envision almost all computing being done in the cloud, much of which could be powered by OpenStack. I think that NASA will need to receive significant credit for that in the history books. What we’ve been able to do is unbelievable— especially when you remember that it all started in a NASA lab.”

[Source]

‘NASA Invention of the Year’ Controls Noise and Vibration

Originating Technology/NASA Contribution

Developed at NASA’s Langley Research Center, the Macro-Fiber Composite (MFC) is an innovative, low-cost piezoelectric device designed for controlling vibration, noise, and deflections in composite structural beams and panels. It was created for use on helicopter blades and airplane wings as well as for the shaping of aerospace structures at NASA.

The MFC is an actuator in the form of a thin patch, almost like a 3- by 2-inch bandage comprised of piezoelectric fibers, an epoxy matrix, and polyimide electrodes, and is also called a piezocomposite. If one applies a voltage to the MFC it will stretch, and if attached to a structure it will cause the surface to bend. The major advantages of a piezofiber composite actuator are higher performance, flexibility, and durability, compared to a traditional piezoceramic actuator.

MFCs consist of rectangular piezoceramic rods sandwiched between layers of adhesive film containing tiny electrodes that transfer a voltage directly to and from ribbon-shaped rods that are no thicker than a few tenths of a millimeter. These miniscule actuators are roughly equivalent to human muscles—flexing, stretching, and returning to their original position when electricity is applied.

Because any external mechanical deformation of an MFC package produces a charge on the electrodes proportional to the deflection, its compression or stretching also enables the MFC to be used as a self-powered sensor. Defects within structures can therefore be detected, or small amounts of energy can be collected and stored for later use.

Macro-Fiber Composite
The Macro-Fiber Composite’s flat profile and use as a sensor and an actuator allows for use in critical or tight areas where other technologies with larger volumetric profiles cannot be used.

The MFC’s combination of small size, durability, flexibility, and versatility allows it to be integrated—along with highly efficient electronic control systems—into a wide range of products. Potential applications include sonar; range-measuring and fish-finding equipment; directional-force and fingerprint sensors; flow meters; and vibration/noise control in aircraft and automobiles. Since its original development in 1999, the MFC has been used in government and industrial applications ranging from vibration reduction to structural health monitoring.

NASA has used MFC piezocomposites for alleviating tail buffeting in aircraft, controlling unsteady aerodynamics and noise on helicopter rotor blades, and actively reducing vibrations in large deployable spacecraft structures. The MFC has been used as a sensor for impedance-based health monitoring of launch tower structures at NASA’s Kennedy Space Center, for strain feedback sensing and control in industrial arc welding equipment, in an STS-123 experiment, in solar sail technology, and in ultra-lightweight inflatable structures.

The MFC has been internationally recognized for its innovative design, receiving two prestigious “R&D 100” awards in 2000, including the “R&D Editor’s Choice” award as one of the 100 most significant technical products of the year. The MFC was also the recipient of the International Forum’s prestigious “iF Gold” award, in Germany, for design excellence in 2004. In March 2007, the MFC was awarded the title of “NASA Invention of the Year.”

Partnership

Smart Material Corporation, of Sarasota, Florida, specializes in the development of piezocomposite components. The company licensed the MFC technology from Langley in 2002, and then added it to their line of commercially produced actuators.

It now combines the Langley MFC’s piezoelectric properties with the robustness and conformability of plastics to radically extend the spectrum of commercial applications.

A NASA partnership gives a small company access to research and technologies that allow it to compete with larger corporations. According to Thomas Daue, with Smart Material Corporation, “For a small business, it is almost not possible anymore to spend the money for basic research in high tech products. Licensing technology from the leading research facilities in this country is a very cost effective way to become a player in a new technology field. Many developments ready for licensing at government-owned facilities have already reached the proof of concept status, which would often cost a small business or start-up millions of dollars.”

Smart Material Corporation is now marketing MFCs internationally, with the majority of applications in the United States directed at Federal government research projects or defense-related government contracts. For example, Smart Material Corporation currently sells the materials to Langley, NASA’s Jet Propulsion Laboratory, and Marshall Space Flight Center, where they are used as strain gauge sensors, as well as to the U.S. Air Force and the U.S. Army.

Product Outcome

Macro-Fiber Composite flexing
When compared to standard piezoelectric systems, the MFC is much more durable and provides increased unidirectional control. Furthermore, the MFC is designed to be readily integrated into a system as an add-on component or integrated during manufacture.

To date, Smart Material Corporation has sold MFCs to over 120 customers, including such industry giants as Volkswagen, Toyota, Honda, BMW, General Electric, and the tennis company, HEAD. The company also estimates that its customers have filed at least 100 patents for their unique uses of the technology.

Smart Material Corporation’s main manufacturing facilities are located in Dresden, Germany, in the vicinity of the Fraunhofer Institute for Ceramic Technologies and Sintered Materials, one of the world’s leading research institutes in the field of advanced ceramics. Dresden is also the center of the German semiconductor industry, and so provides crucial interdisciplinary resources for further MFC refinement. In addition to its Sarasota facility, the company also has sales offices in Dresden and in Tokyo, Japan.

The company’s product portfolio has grown to include piezoceramic fibers and fiber composites, piezoceramic actuators and sensors, and test equipment for these products. It also offers a compact, lightweight power system for MFC testing and validation.

Smart Material Corporation believes that solid-state actuator systems, including piezoceramics, will have healthy commercial growth in the coming years, with increasing penetration in industrial, medical, automotive, defense, and consumer markets. Consumer applications already on the market include piezoelectric systems as part of audio speakers, phonograph cartridges and microphones, and recreational products requiring vibration control, such as skis, snowboards, baseball bats, hockey sticks, and tennis racquets.

How NASA tech makes an impact in your daily life

NASA suffers from an interesting problem: NASA gets credit for things it didn’t do and doesn’t get credit for things it did do. The public knows that the investment in space and space technologies brings about innovations that improve our daily lives. An understanding of what those technologies are, however, is something that is often elusive. NASA is often mistakenly credited with inventing commonplace consumer products to which it had either tangential connections or no connections—certainly not an enabling connection. Meanwhile, the real stories of NASA’s technological achievements are often unknown.

 

This is an issue that has nagged at NASA since the Apollo program. Prior to the success of the Apollo program, for many, travel to other celestial bodies and the associated space technologies were dreams of the future, but with the successful Moon landings, there came the realization that these cutting-edge technologies were things of the present. This generated a keen interest in the public and an expectation that, since we were now living in a “space age,” that these technologies developed for space should reach homes and factories across the country.

 

This era, the middle portion of the 20th century, was also a period when many new technologies were already reaching the public, spurred by advances in manufacturing and electronics. And while this influx of new consumer electronics and gadgets happened during a time when people were discovering the possibilities of space flight, many of the new goods were not directly related to any space or NASA mission. As a result, to this day, people (sometimes employees of NASA included) often mistake common household goods like microwave ovens, quartz wristwatches, smoke detectors, and barcodes for NASA technologies.  While the Apollo program did bring about many significant spinoff technologies—like some of the first practical uses of the integrated circuit, the predecessor of the modern microchip—the difference between recorded spinoff technologies and public perception is pronounced.

 

The belief that NASA technologies have direct benefit to our everyday lives, though, is not misplaced.

 

The benefits of NASA technology are all around us. Among those that have had the greatest impact are:

  • A cardiac pump that functions as a “bridge to transplant” for patients and which has saved hundreds of lives.
  • The cameras in many cell phones.

  • Memory foam, a material found in everything from mattresses to sports helmets.

  • Aerodynamics advances that have been widely implemented in truck designs—today nearly all trucks on the road incorporate NASA technology.

  

 

  • Liquidmetal alloys that are used in everything from sports equipment to computers and mobile devices.

 

These and many other products have all benefitted from the Nation’s investments in aerospace technology. The list goes on.

 

A recent analysis of companies who have recently commercialized NASA technology shows impressive results: billions of dollars in generated revenue, billions in cost savings, tens of thousands of jobs created and tens of thousands of lives saved.

 

NASA is committed to moving technologies and innovations into the mainstream of the U.S. economy, and we actively seek partnerships with U.S. companies that can license NASA innovations and create spinoffs in areas such as health and medicine, consumer goods, transportation, renewable energy and manufacturing.

 

NASA is also committed to telling this story and making sure both that the public is aware of the benefits of its investment in space technology, but also that American industry is aware of the availability of NASA technology research and assistance through its Technology Transfer Program.

 

Just this month, NASA released its newest edition of Spinoff. A long-standing NASA tradition, this annual report highlights some of the many advances that have come out of NASA’s Technology Transfer Program. Spinoffs in this year’s book alone include:

International Space Station

  • An invisible coating, developed by a NASA Dual-Use Technology partner and tested at NASA facilities, that is capable of breaking down pollutants, eliminating odors, and inhibiting the buildup of grime. The technology’s many applications include enhancing the efficiency of solar cells, sanitizing air in the homes of those suffering from cystic fibrosis, and even transforming buildings and towering modern art sculptures into massive air purifiers.

 

QC Bot traveling down a hospital hallway

  • A robot assistant now found in the halls of hospitals around the country, helping with everything from registering patients to logging vital signs. The robot has been dubbed “a Mars rover in a hospital” by one of its developers, who employed the expertise he gained working on Mars robotics for NASA to create the technology. The robot is not only easing the workload of hospital staff but also providing an economic return, creating 20 new jobs for its manufacturer.

 

 

 

Two Cricket Trailers at the beach and Interior

  • A recreational trailer designed using the same principles that supplied comfortable living quarters for the crew of the International Space Station. The trailer’s creator used his experience as a NASA architect to create a unique, eco-friendly means for reconnecting with nature and revitalizing interest in our Nation’s parks.

 

 

 

Deep Space 1 spacecraft

  • A solar concentration technology that, for the same amount of silicon, can provide many times the power of conventional panels benefited from innovations developed through a NASA Small Business Innovation Research (SBIR) partnership. The company founded to commercialize these NASA-derived sustainable energy installations now employs 30 workers, all with a mission to move renewable solar power into true mainstream use.

 

406 MHz personal locator beacon

  • A worldwide search and rescue system that was founded through NASA innovation. Enabled in part by satellite ground stations developed and constructed by a NASA partner, the true value of this spinoff is inestimable. To date, more than 30,000 lives have been saved, on average more than 6 a day, from the highly publicized 2010 rescue of teen sailor Abby Sunderland to the rescue of fishermen, hikers, and adventurers around the world.

 

 

 

 

The Spinoff report is available online at http://spinoff.nasa.gov, where you will also find a searchable database of the over 1,800 spinoffs NASA has recorded since it began the Spinoff report in 1976.