Mars Cameras Make Panoramic Photography a Snap


Originating Technology/NASA Contribution

The Gigapan robotic platform holds a digital camera.
The Gigapan robotic platform now enables photographers on Earth to capture and create super-sized digital panoramas.

If you wish to explore a Martian landscape without leaving your armchair, a few simple clicks around the NASA Web site will lead you to panoramic photographs taken from the Mars Exploration Rovers, Spirit and Opportunity. Many of the technologies that enable this spectacular Mars photography have also inspired advancements in photography here on Earth, including the panoramic camera (Pancam) and its housing assembly, designed by the Jet Propulsion Laboratory and Cornell University for the Mars missions. Mounted atop each rover, the Pancam mast assembly (PMA) can tilt a full 180 degrees and swivel 360 degrees, allowing for a complete, highly detailed view of the Martian landscape.

The rover Pancams take small, 1 megapixel (1 million pixel) digital photographs, which are stitched together into large panoramas that sometimes measure 4 by 24 megapixels. The Pancam software performs some image correction and stitching after the photographs are transmitted back to Earth. Different lens filters and a spectrometer also assist scientists in their analyses of infrared radiation from the objects in the photographs. These photographs from Mars spurred developers to begin thinking in terms of larger and higher quality images: super-sized digital pictures, or gigapixels, which are images composed of 1 billion or more pixels.

Gigapixel images are more than 200 times the size captured by today’s standard 4 megapixel digital camera. Although originally created for the Mars missions, the detail provided by these large photographs allows for many purposes, not all of which are limited to extraterrestrial photography.


The technology behind the Mars rover PMAs inspired Randy Sargent at Ames Research Center and Illah Nourbakhsh at Carnegie Mellon University (CMU) to look at ways consumers might be able to use similar technology for more “down-to-Earth” photography and virtual exploration.

In 2005, Sargent and Nourbakhsh created the Global Connection Project, a collaboration of scientists from CMU, Google Inc., and the National Geographic Society, whose vision is to encourage better understanding of the Earth’s cultures through images. This vision inspired the development of their Gigapan products.

After seeing what the Pancams and PMAs could do, Sargent created a prototype for a consumer-version of a robotic camera platform. He worked with Rich LeGrand of Charmed Labs LLC, in Austin, Texas, to design and manufacture the Gigapan robotic platform for standard digital cameras.

Product Outcome

The Gigapan robotic platform is, in essence, an intelligent tripod that enables an amateur photographer to set up detailed shots with ease. A user sets the upper-left and lower-right corners of the panorama, and the Gigapan simply will capture as many images as the user or scene requires. With this level of automation, a 500-picture panorama is no more complicated than a 4-picture panorama; only the camera’s memory limits the size of the panorama.

The Global Connection Project also created two other Gigapan products: a Gigapan Web site and panorama stitching software born from the Ames Vision Workbench, an image processing and computer vision library developed by the Autonomous Systems and Robotics Area in the Intelligent Systems Division.

A high-resolution composite photograph shows a monk atop a temple in Nepal, the temple at a distance, and a restaurant behind the temple.
Gigapan allows a photographer to capture extremely high-resolution panoramas, which a user can explore in depth. In this wide view of Boudhanath Stupa in Kathmandu, Nepal, it is possible to zoom all the way into the smallest, barely visible points in the picture, such as the monk standing on the roof of the temple or the sign above the Tibet Kitchen Restaurant and Bar.
Gigapan panoramic image courtesy of Jessee Mayfield.

The robotic platform works with the stitching software by precisely manipulating and aligning each shot ahead of time. The Gigapan software complements the robotic platform by arranging the parts of the panorama (potentially hundreds of individual photographs) into a grid where they are stitched together into a single, very large Gigapan image.

The Global Connection Project won a 2006 “Economic Development Award” from the Tech Museum Awards for its work in creating photographic overlays for Google Earth of areas affected by natural disasters. Government workers and concerned citizens used the images on Google Earth to see which areas needed help in the aftermath of Hurricane Katrina, Hurricane Rita, and the 2005 earthquake in Kashmir.

On the Gigapan Web site, a user can display a wide bird’s eye panorama and can then zoom in with impressive bug’s eye high-quality detail. On first impression, a panoramic photograph on Gigapan’s site might seem to be simply a wide-angle cityscape of a temple in Kathmandu. With each successive click, however, the user can zoom deeper and deeper into the photo, revealing more and more clear details: a monk hanging prayer flags on the roof of the temple and the Tibet Kitchen Restaurant and Bar a few blocks behind the temple, with a sign extolling passersby to taste their gourmet food.

As part of a continuing effort to connect people and cultures, the Global Connection Project encourages all users to upload their own panoramas from around the world on the Gigapan site. Users can explore such varied landscapes as a temple in Nepal, the Burning Man festival in the Nevada desert, a market in Guatemala, or the Boston skyline from the Charles River. Because of the much greater number of pixels, the resolution is unprecedented; the Gigapan software and robotic platforms can theoretically produce prints on 40-foot-wide paper without any loss in quality.

Whether or not photographers use the Gigapan mounts and software, anyone can upload their panoramas to the Gigapan Web site. Many users of Gigapan have uploaded standard panorama photographs, as well (although the site suggests photographs be at least 50 megabytes). This is just fine with the Gigapan and the Global Connection Project coordinators, whose aim is simply to encourage exploration and understanding of the various cultures in our world.

The Fine Family Foundation is sponsoring work with the Global Connection Project to enable botanists, geologists, archeologists, and other scientists around the world to document different aspects of the Earth’s cultures and ecosystems using Gigapan technology. Scientists are using Gigapan to document life in the upper redwood forest canopy in California, volcanoes in Hawaii, and glaciers in Norway.

There are also educational uses for the Gigapan: The Pennsylvania Board of Tourism uses Gigapan for Web site visitors wanting to explore Civil War sites virtually. Also, in collaboration with the United Nations Educational, Scientific and Cultural Organization (UNESCO), the Global Connection Project has distributed Gigapan to students in Pittsburgh, South Africa, and the Republic of Trinidad and Tobago, encouraging them to photograph their local culture and share those panoramas with the world. “The hope is that students will be able to have deeper connections to other cultures,” said Sargent.

A time-lapse Gigapan robotic mount is now in development, and a professional unit for larger SLR-style cameras may be released before the end of 2008.

Gigapan is a trademark of Carnegie Mellon University.


Winglets Save Billions of Dollars in Fuel Costs


Originating Technology/NASA Contribution

KC-135 aircraft
During the 1970s, the focus at Dryden Flight Research Center shifted from high-speed and high-altitude flight to incremental improvements in technology and aircraft efficiency. One manifestation of this trend occurred in the winglet flight research carried out on this KC-135 during 1979 and 1980.

Anyone who has made a paper airplane knows that folding the wingtips upward makes your plane look better and fly farther, though the reasons for the latter might be a mystery. The next time you snag a window seat on an airline flight, check out the plane’s wing. There is a good chance the tip of the wing will be angled upward, almost perpendicular. Or it might bend smoothly up like the tip of an eagle’s wing in flight. Though obviously more complex, these wing modifications have the same aerodynamic function as the folded wingtips of a paper airplane. More than an aesthetically pleasing design feature, they are among aviation’s most visible fuel-saving, performance-enhancing technologies.

Aerodynamics centers on two major forces: lift and drag. Lift is the force that enables a plane to fly. It is generated by unequal pressure on a wing as air flows around it—positive pressure underneath the wing and negative pressure above. Drag is the resistance encountered while moving through the airflow. A significant source of drag is actually derived from the high pressure under the wing, which causes air to flow up over the wingtip and spin off in a vortex. These vortices produce what is called induced drag and are powerful enough to disrupt aircraft flying too closely to one another—one reason for the carefully monitored spacing between flights at takeoff and in the air. Induced drag hampers aircraft performance, cutting into fuel mileage, range, and speed.

In 1897, British engineer Frederick W. Lanchester conceptualized wing end-plates to reduce the impact of wingtip vortices, but modern commercial technology for this purpose traces its roots to pioneering NASA research in the 1970s. At the time, NASA’s Aircraft Energy Efficiency (ACEE) program sought ways to conserve energy in aviation in response to the 1973 oil crisis. As part of the ACEE effort, Langley Research Center aeronautical engineer Richard Whitcomb conducted computer and wind tunnel tests to explore his hypothesis that a precisely designed, vertical wingtip device—which Whitcomb called a “winglet”—could weaken wingtip vortices and thus diminish induced drag. Less drag would translate into less fuel burn and better cruise efficiency. The winglet concept provided a better option than simple wing extensions which, while offering similar aerodynamic benefits, would require weight-adding strengthening of the wings and could render a plane too wide for airport gates.

After evaluating a range of winglet designs, Whitcomb published his findings in 1976, predicting that winglets employed on transport-size aircraft could diminish induced drag by approximately 20 percent and improve the overall aircraft lift-drag ratio by 6 to 9 percent.

Whitcomb’s research generated interest in civil and military aviation communities, leading to flight testing that would not only confirm his predictions, but help popularize the winglet technology now found on airplanes around the world.


In 1977, NASA, the U.S. Air Force, and The Boeing Company, headquartered in Chicago, initiated a winglet flight test program at Dryden Flight Research Center. Whitcomb’s Langley team provided the design, and Boeing, under contract with NASA, manufactured a pair of 9-foot-high winglets for the KC-135 test aircraft provided by the Air Force.

Whitcomb was validated: The tests demonstrated a 7-percent increase in lift-drag ratio with a 20-percent decrease in induced drag—directly in line with the Langley engineer’s original findings. Furthermore, the winglets had no adverse impact on the airplane’s handling. The Dryden test program results indicated to the entire aviation industry that winglets were a technology well worth its attention.

The 1970s were an important decade for winglet development for smaller jet aircraft, with manufacturers Learjet and Gulfstream testing and applying the technology. Winglets for large airliners began to appear later; in 1989, Boeing introduced its winglet-enhanced 747-400 aircraft, and in 1990 the winglet-equipped McDonnell Douglas MD-11 began commercial flights following winglet testing by the company under the ACEE program.

In 1999, Aviation Partners Boeing (APB) was formed, a partnership with Seattle-based Aviation Partners Inc. and The Boeing Company. The companies created APB initially to equip Boeing Business Jets, a 737 derivative, with Aviation Partners’ unique take on the NASA-proven winglet technology: Blended Winglets.

Product Outcome

Aircraft with winglets
Aviation Partners Boeing manufactures and retrofits Blended Winglets for commercial airliners. The technology typically produces a 4- to 6-percent fuel savings, which can translate to thousands of gallons of fuel saved per plane, per year.

Like other winglet designs, APB’s Blended Winglet reduces drag and takes advantage of the energy from wingtip vortices, actually generating additional forward thrust like a sailboat tacking upwind. Unlike other winglets that are shaped like a fold, this design merges with the wing in a smooth, upturned curve. This blended transition solves a key problem with more angular winglet designs, says Mike Stowell, APB’s executive vice president and chief technical officer.

“There is an aerodynamic phenomena called interference drag that occurs when two lifting surfaces intersect. It creates separation of the airflow, and this gradual blend is one way to take care of that problem,” he says.

APB’s Blended Winglets are now featured on thousands of Boeing aircraft in service for numerous American and international airlines. Major discount carriers like Southwest Airlines and Europe’s Ryanair take advantage of the fuel economy winglets afford. Employing APB’s Blended Winglets, a typical Southwest Boeing 737-700 airplane saves about 100,000 gallons of fuel each year. The technology in general offers between 4- and 6-percent fuel savings, says Stowell.

“Fuel is a huge direct operating cost for airlines,” he explains. “Environmental factors are also becoming significant. If you burn less fuel, your emissions will go down as well.” APB winglets provide up to a 6-percent reduction in carbon dioxide emissions and an 8-percent reduction in nitrogen oxide, an atmospheric pollutant. The benefits of winglets do not stop there, Stowell explains. Reduced drag means aircraft can operate over a greater range and carry more payload. Winglet-equipped airplanes are able to climb with less drag at takeoff, a key improvement for flights leaving from high-altitude, high-temperature airports like Denver or Mexico City. Winglets also help planes operate more quietly, reducing the noise footprint by 6.5 percent.

If all the single-digit percentages of savings seem insignificant on their own, they add up. In 2010, APB announced its Blended Winglet technology has saved 2 billion gallons of jet fuel worldwide. This represents a monetary savings of $4 billion and an equivalent reduction of almost 21.5 million tons in carbon dioxide emissions. APB predicts total fuel savings greater than 5 billion gallons by 2014.

APB, the only company to currently both manufacture and retrofit winglets for commercial airliners, is currently equipping Boeing vehicles at the rate of over 400 aircraft per year. It is also continually examining ways to advance winglet technology, including spiroid winglets, a looped winglet design Aviation Partners first developed and successfully tested in the 1990s. That design reduced fuel consumption more than 10 percent.

While winglets require careful customization for each type of plane, they provide effective benefits for any make and model of aircraft—even unmanned aerial vehicles. Consider other winglet designs on commercial carriers, as well as blended and other winglets on smaller jets and general aviation aircraft, and the impact of the original NASA research takes on even greater significance.

“Those flight tests put winglets on the map,” says Stowell.

Blended Winglets™ is a trademark of Aviation Partners Inc.